This page showcases an evolving list of affiliated research projects that have utilized the UChicago DSI Cluster, highlighting current work that benefits from the cluster’s computing resources.
Publications
2025
-
On the effectiveness and generalization of race representations for debiasing high-stakes decisions
Nguyen, D., & Tan, C. -
Entailment Progressions: A Robust Approach to Evaluating Reasoning Within Larger Discourse
Shastry, R., Chiril, P., Charney, J., & Uminsky, D. -
Can AI Weather Models Predict the 2024 Dubai Rainfall, a Regional Grey Swan?
Sun, Y. Q., Hassanzadeh, P., & Shaw, T. A. -
A Century of Inflation Narratives
Heddaya, M., Tan, C., Voigt, R., Zeng, Q., & Zentefis, A. -
Deep Learning and Non-Invertible Symmetries in Gauge Theories
Apte, A. -
Cer-Eval: Certifiable and Cost-Efficient Evaluation Framework for LLMs
Wang, G., Chen, Z., Li, B., & Xu, H. -
The content, structure, and history of English trait words
Liu, Y., Charlesworth, T., Koch, A., Luttrell, A., & Jackson, J. C. -
Efficient Distributed Optimization under Heavy-Tailed Noise
Lee, S. H., Zaheer, M., & Li, T. -
Humans and convolutional neural networks prioritize similar visual features in intuitive physics judgments
Calabro, R., Bhattacharyya, K., Bainbridge, W., & Leong, Y. C. -
Predicting whole-brain neural dynamics from prefrontal cortex functional near-infrared spectroscopy signal during movie-watching
Gao, S., Nash, R., Burns, S., & Leong, Y. C. -
A Multimodal Seq2Seq Transformer for Predicting Brain Responses to Naturalistic Stimuli
He, Q., & Leong, Y. C. -
Automated scoring of the Ambiguous Intentions Hostility Questionnaire using fine-tuned large language models.
Lyu, Y., Combs, D., Neumann, D., & Leong, Y. C. -
Emotional arousal enhances narrative memories through functional integration of large-scale brain networks
Park, J. S., Gollapudi, K., Ke, J., Nau, M., Pappas, I., & Leong, Y. C. -
Linear representations of political perspective emerge in large language models
Kim, J., Evans, J., & Schein, A. -
Unraveling Misinformation Propagation in LLM Reasoning
Feng, Y., Wang, Y., Cui, S., Faltings, B., Lee, M., & Zhou, J. -
AbsenceBench: Language Models Can’t Tell What’s Missing
Fu, H. Y., Shrivastava, A., Moore, J., West, P., Tan, C., & Holtzman, A. -
Linearly Decoding Refused Knowledge in Aligned Language Models
Shrivastava, A., & Holtzman, A. -
Data assimilation with machine learning surrogate models: A case study with FourCastNet
Adrian, M., Sanz-Alonso, D., & Willett, R. -
Evaluating the Goal-Directedness of Large Language Models
Everitt, T., Garbacea, C., Bellot, A., Richens, J., Papadatos, H., Campos, S., & Shah, R. -
HyPerAlign: Interpretable Personalized LLM Alignment via Hypothesis Generation
Garbacea, C., & Tan, C. -
MOFA: Discovering Materials for Carbon Capture with a GenAI-and Simulation-Based Workflow
Yan, X., Hudson, N., Park, H., Grzenda, D., Pauloski, J. G., Schwarting, M., Harb, H., Foreman, S., Knight, C., Gibbs, T., Chard, K., Chaudhuri, S., Tajkhorshid, E., Foster, I., Moosavi, M., Ward, L., & Huerta, E. A. -
Cartesian Equivariant Representations for Learning and Understanding Molecular Orbitals
King, D., Grzenda, D., Zhu, R., Hudson, N., Foster, I., Cheng, B., & Gagliardi, L. -
Historical Polarization in Legislative Support for Civil Rights in the United States
Jackson, J. C., Liu, Y., & Kteily, N. S. -
Prejudice Tied to State Centralization in Historical Societies
Dillion, D., Liu, Y., Chen, Y., Watts, J., Zhao, C., Baral, S., Bucker, W., Atari, M., Kteily, N., & Jackson, J. C. -
Rising Moralization in Social Media Discourse
Puryear, C., Brady, W., Jackson, J. C., Leong, Y., & Kteily, N. -
Seeds of Discourse: A Multilingual Corpus of Direct Quotations from African Media on Agricultural Biotechnologies
Chiril, P., Spreadbury, T., Rock, J. S., Dowd-Uribe, B., & Uminsky, D. -
A Century of Inflation Narratives
Heddaya, M., Tan, C., Voigt, R., Zeng, Q., & Zentefis, A. -
A machine learning model using clinical notes to identify physician fatigue
Hsu, C.-C., Obermeyer, Z., & Tan, C. -
Hypobench: Towards systematic and principled benchmarking for hypothesis generation
Liu, H., Huang, S., Hu, J., Zhou, Y., & Tan, C. -
Relu neural networks with linear layers are biased towards single-and multi-index models
Parkinson, S., Ongie, G., & Willett, R. -
Prediction-Powered Adaptive Shrinkage Estimation
Li, S., & Ignatiadis, N. -
Stein’s unbiased risk estimate and Hyvärinen’s score matching
Ghosh, S., Ignatiadis, N., Koehler, F., & Lee, A. -
Introspective Growth: Automatically Advancing LLM Expertise in Technology Judgment
Wu, S., Bao, H., Kunievsky, N., & Evans, J. A. -
Language models surface the unwritten code of science and society
Bao, H., Wu, S., Choi, J., Mao, Y., & Evans, J. A. -
Layers at similar depths generate similar activations across llm architectures
Wolfram, C., & Schein, A. -
Broad Spectrum Structure Discovery in Large-Scale Higher-Order Networks
Hood, J., De Bacco, C., & Schein, A. -
Modeling Latent Underdispersion with Discrete Order Statistics
Lederman, J., & Schein, A. -
Private Retrieval Augmented Generation with Random Projection
Yao, D., & Li, T. -
Multiple Streams of Relation Extraction: Enriching and Recalling in Transformers
Nief, T., Reber, D., Richardson, S., & Holtzman, A. -
HypoEval: Hypothesis-Guided Evaluation for Natural Language Generation
Li, M., Li, H., & Tan, C. -
Multi-frequency progressive refinement for learned inverse scattering
Melia, O., Tsang, O., Charisopoulos, V., Khoo, Y., Hoskins, J., & Willett, R. -
Hardware Acceleration for HPS Algorithms in Two and Three Dimensions
Melia, O., Fortunato, D., Hoskins, J., & Willett, R. -
Incorporating Hierarchical Semantics in Sparse Autoencoder Architectures
Muchane, M., Richardson, S., Park, K., & Veitch, V. -
Concept Incongruence: An Exploration of Time and Death in Role Playing
Bai, X., Peng, I., Singh, A., & Tan, C. -
Grounded Persuasive Language Generation for Automated Marketing
Wu, J., Yang, C., Mahns, S., Wang, C., Zhu, H., Fang, F., & Xu, H. -
Tokenized Bandit for LLM Decoding and Alignment
Shin, S., Yang, C., Xu, H., & Hajiaghayi, M. T. -
How Alignment Shrinks the Generative Horizon
Yang, C., & Holtzman, A. -
Hierarchical Implicit Neural Emulators
Jiang, R., Zhang, X., Jakhar, K., Lu, P. Y., Hassanzadeh, P., Maire, M., & Willett, R. -
CLEAR: A Clinically-Grounded Tabular Framework for Radiology Report Evaluation
Jiang, Y., Chen, C., Wang, S., Li, F., Tang, Z., Mervak, B. M., Chelala, L., Straus, C. M., Chahine, R., Armato, S. G. III, & Tan, C. -
The geometry of categorical and hierarchical concepts in large language models
Park, K., Choe, Y. J., Jiang, Y., & Veitch, V. -
RATE: Causal Explainability of Reward Models with Imperfect Counterfactuals
Reber, D., Richardson, S. M., Nief, T., Garbacea, C., & Veitch, V. -
Solving Inverse Problems with Deep Linear Neural Networks: Global Convergence Guarantees for Gradient Descent with Weight Decay
Laus, H., Parkinson, S., Charisopoulos, V., Krahmer, F., & Willett, R. -
Nonlinear tomographic reconstruction via nonsmooth optimization
Charisopoulos, V., & Willett, R.
2024
-
Causal Micro-Narratives
Zentefis, A., Tan, C., Heddaya, M., Voigt, R., & Zeng, Q. -
Casesumm: a large-scale dataset for long-context summarization from us supreme court opinions
Heddaya, M., MacMillan, K., Malani, A., Mei, H., & Tan, C. -
Inconsistency of cross-validation for structure learning in Gaussian graphical models
Lyu, Z., Tai, W. M., Kolar, M., & Aragam, B. -
Efficient adaptive federated optimization
Lee, S. H., Sharma, S., Zaheer, M., & Li, T. -
Tilted Sharpness-Aware Minimization
Li, T., Zhou, T., & Bilmes, J. A. -
Tree Bandits for Generative Bayes
O’Hagan, S., Kim, J., & Rockova, V. -
Does Editing Provide Evidence for Localization?
Wang, Z., & Veitch, V. -
Hostile attribution bias shapes neural synchrony in the left ventromedial prefrontal cortex during ambiguous social narratives
Lyu, Y., Su, Z., Neumann, D., Meidenbauer, K. L., & Leong, Y. C. -
Residual connections harm self-supervised abstract feature learning
Zhang, X., Jiang, R., Gao, W., Willett, R., & Maire, M. -
Latent intrinsics emerge from training to relight
Zhang, X., Gao, W., Jain, S., Maire, M., Forsyth, D., & Bhattad, A. -
The linear representation hypothesis and the geometry of large language models
Park, K., Choe, Y. J., & Veitch, V. -
An Empirical Investigation of Container Building Strategies and Warm Times to Reduce Cold Starts in Scientific Computing Serverless Functions
Bauer, A., Gonthier, M., Pan, H., Chard, R., Grzenda, D., Straesser, M., Pauloski, J. G., Kamatar, A., Baughman, M., Hudson, N., Foster, I., & Chard, K. -
Sok: On finding common ground in loss landscapes using deep model merging techniques
Khan, A., Nief, T., Hudson, N., Sakarvadia, M., Grzenda, D., Ajith, A., Pettyjohn, J., Chard, K., & Foster, I. -
Deep Model Merging: The Sister of Neural Network Interpretability–A Survey
Khan, A., Nief, T., Hudson, N., Sakravadia, M., Grzenda, D., Ajith, A., Pettyjohn, J., Chard, K., & Foster, I. -
BioMAISx: A Corpus for Aspect-Based Sentiment Analysis of Media Representations of Agricultural Biotechnologies in Africa
Chiril, P., Spreadbury, T., Rock, J. S., Dowd-Uribe, B., & Uminsky, D. -
Quantifying the uniqueness and divisiveness of presidential discourse
Zhou, K., Meitus, A. A., Chase, M., Wang, G., Mykland, A., Howell, W., & Tan, C. -
Hypothesis generation with large language models
Zhou, Y., Liu, H., Srivastava, T., Mei, H., & Tan, C. -
The ALCORE Tensor Decomposition for Sparse Count Data
Hood, J., & Schein, A. J. -
Nested diffusion models using hierarchical latent priors
Zhang, X., Jiang, R., Willett, R., & Maire, M. -
Deep learning lattice gauge theories
Apte, A., Córdova, C., Huang, T.-C., & Ashmore, A. -
Literature Meets Data: A Synergistic Approach to Hypothesis Generation
Liu, H., Zhou, Y., Li, M., Yuan, C., & Tan, C. -
Neural entropy
Premkumar, A. -
Diffusion Density Estimators
Premkumar, A. -
Identifying Self-Disclosures of Use, Misuse and Addiction in Community-based Social Media Posts (NAACL 2024 Findings)
Yang, C., Chakrabarty, T., Hochstatter, K. R., Slavin, M. N., El‑Bassel, N., & Muresan, S. -
When Hindsight is Not 20/20: Testing Limits on Reflective Thinking in Large Language Models (NAACL 2024 Findings)
Li, Y., Yang, C., & Ettinger, A. -
Training Machine Learning Emulators to Preserve Invariant Measures of Chaotic Attractors
Lu, P., Jiang, R., Orlova, E., & Willett, R. -
Embed and Emulate: Contrastive representations for simulation-based inference
Jiang, R., Lu, P. Y., & Willett, R. -
Bonbon alignment for large language models and the sweetness of best-of-n sampling
Gui, L., Gârbacea, C., & Veitch, V. -
Stabilizing black-box model selection with the inflated argmax.
Adrian, M., Soloff, J. A., & Willett, R. -
Gpt-4v cannot generate radiology reports yet
Jiang, Y., Chen, C., Nguyen, D., Mervak, B. M., & Tan, C. -
Beyond reverse KL: Generalizing direct preference optimization with diverse divergence constraints
Wang, C., Jiang, Y., Yang, C., Liu, H., & Chen, Y. -
On the origins of linear representations in large language models
Jiang, Y., Rajendran, G., Ravikumar, P. K., Aragam, B., & Veitch, V.
2023
-
Measurement in the age of llms: An application to ideological scaling
O’Hagan, S., & Schein, A. -
Clinical Notes Reveal Physician Fatigue
Hsu, C.-C., Obermeyer, Z., & Tan, C. -
Training neural operators to preserve invariant measures of chaotic attractors
Jiang, R., Lu, P. Y., Orlova, E., & Willett, R. -
Rotation-invariant random features provide a strong baseline for machine learning on 3D point clouds
Melia, O., Jonas, E., & Willett, R. -
Can You Follow Me? Testing Situational Understanding in ChatGPT (EMNLP 2023)
Yang, C., & Ettinger, A. -
Deep Stochastic Mechanics
Orlova, E., Ustimenko, A., Jiang, R., Lu, P. Y., & Willett, R. -
Concept algebra for (score-based) text-controlled generative models
Wang, Z., Gui, L., Negrea, J., & Veitch, V. -
Uncovering meanings of embeddings via partial orthogonality
Jiang, Y., Aragam, B., & Veitch, V. -
Learning nonparametric latent causal graphs with unknown interventions
Jiang, Y., & Aragam, B.
2022
- A Unified Causal View of Domain Invariant Representation Learning
Wang, Z., & Veitch, V.